Circular Coinduction
Grigore Rosu! and Joseph Goguen?

! Research Institute for Advanced Computer Science
Automated Software Engineering Group
NASA Ames Research Center
Moffett Field, California, 94035-1000, USA

http://ase.arc.nasa.gov/grosu

? Department of Computer Science & Engineering
University of California at San Diego
9500 Gilman Drive, La Jolla, California 92093-0114, USA

http://wwu-cse.ucsd.edu/users/goguen

Abstract. Circular coinduction is a technique for behavioral reasoning
that extends cobasis coinduction to specifications with circularities. Be-
cause behavioral satisfaction is not recursively enumerable, no algorithm
can work for every behavioral statement. However, algorithms using cir-
cular coinduction can prove every practical behavioral result that we
know. This paper proves the correctness of circular coinduction and some
consequences.

1 Introduction

Software and hardware systems are growing in complexity, with ever greater
possibilities for subtle errors; these can produce significant loss, including human
life. Unfortunately, building complex reliable systems is very difficult, due to
incompleteness and rapid evolution of requirements, and to difficulties in writing
and understanding specifications. One approach is through formal methods, with
its two best known branches being model checking and theorem proving; these
can reveal inconsistencies, ambiguities and exceptions that could be expensive
or impossible to detect otherwise.

This paper is part of our effort to design, implement, evaluate and popularize
formal method tools for behavioral specification and verification. Our Tatami
system [15,12,11] and its BOBJ component!, a behavioral specification and
verification language of the OBJ family, use hidden algebra [9, 17]. Although our
work is mainly on theorem proving, our results also have implications for model
checking; in particular, only one state in a behavioral equivalence class needs to
be stored, and instead of hashing all visited states, a behavioral model checker
can just check whether a new state is equivalent to one already stored; this is
actually how our CCRW [14] (circular coinductive rewriting) algorithm works in
its BOBJ implementation.

! BOBJ comes from “Behavioral OBJ,” where “OBJ” [20] names a family of algebraic
programming and specification languages based on parameterized programming and
order sorted term rewriting and algebra, possibly enriched with other logics.



Some results in this paper were sketched in [28] and implemented by Kai
Lin in BOBJ [14,13], but this paper gives the first correctness proof for circu-
lar coinduction, and for some of its consequences. Although our examples use
BOBJ, we do not present BOBJ in detail, but only the features needed for
these examples. The latest information on hidden algebra, including the most
recent papers, links to related work, and online tutorial material, can be found at
www.cs.ucsd.edu/users/goguen/projs/halg.html, the hidden algebra homepage.

2 Hidden Logic

Today’s software systems often follow the “object paradigm,” which may be
described as having;:

1. objects with local state and operations that modify or observe them, called
methods and attributes, respectively;

2. classes that classify objects through an inheritance hierarchy; and

3. concurrent distributed execution.

Hidden algebra formalizes the object paradigm, but also includes ordinary pro-
grams and components. Our behavioral approach is motivated by the fact that
cleverly designed systems often fail to satisfy their requirements strictly, but in-
stead only satisfy them behaviorally, in the sense of appearing to satisfy them
under all possible experiments.

Hidden algebra was introduced [9] to give algebraic semantics for the object
paradigm, and developed further in [10,16,4,17] among other places. One dis-
tinctive feature is a split of sorts into visible and hidden, where visible sorts are
for data and hidden sorts are for objects. A model, or hidden algebra, is an ab-
straction of an implementation, consisting of the possible states, with concrete
functions for the attributes and methods, from states to data and to states,
respectively (hence, an attribute “observes” states by returning a visible value,
while a method modifies states); i.e., a hidden algebra is an algebra that includes
a data universe.

Hidden logic is the generic name for various logics closely related to hidden
algebra, giving sound rules for behavioral reasoning that are easily automated.
Following [5], we distinguish two classes of hidden logics, depending on whether
the data universe, of “built-ins,” is assumed fixed or not. The first versions of
hidden logic took the fixed data approach, but we recently noticed that all our
inference rules are sound for the larger class of models which need not protect
data. Since there are also loose data versions of hidden logic, such as coherent
hidden algebra [7,8] and observational logic [1,2,21], we decided not to restrict
our exposition to the fixed data case. Nevertheless, the fixed data hidden logics
are often desirable, since real applications use standard booleans and integers
rather than arbitrary models; for example, the alternating bit protocol cannot

be proved correct unless implementations which do not distinguish 0 from 1 are
forbidden.



A detailed presentation of various hidden logics appears in [26] together with
relations to many other concepts, a history of hidden algebra with citations,
and proofs for some results mentioned but not proved here. We now introduce
some of the most basic concepts, assuming familiarity with ordinary many sorted
algebra:

Definition 1. Given disjoint sets V,H called visible and hidden sorts, a
loose data hidden (V, H)-signature is a many sorted (V U H)-signature.
A fixed data hidden (V, H)-signature is a pair (X, D) where X is a loose
data hidden (V, H)-signature and D, called the data algebra, is a many sorted
YTy -algebra. A loose data hidden subsignature of X is a loose data hidden
(V, H)-signature I' with I' C ¥ and I'Ty= X[|y. A fixed data hidden subsig-
nature of (¥, D) is a fived data hidden (V, H)-signature (I, D) over the same
data with I' C X and I'l'v= X[v. The operations in X with one hidden argu-
ment and visible result are called attributes, those with one hidden argument
and hidden result are called methods, those with two hidden arguments and
hidden result are called binary methods, and those with only (zero or more)
visible arguments and hidden result are called hidden constants.

Hereafter we may write “hidden signature” instead of “loose data hidden (V, H)-
signature” or “fixed data hidden (V, H)-signature,” since we don’t need to dis-
tinguish them; also we often write X' for (¥, D).

Definition 2. A loose data hidden Y-algebra A is a XY -algebra, and a fixed
data hidden (X, D)-algebra A is a ¥-algebra A such that A5, = D.

Again, we often write just “hidden algebra.” A hidden algebra can be regarded
as a “blackbox,” the inside of which is not seen, since one is only concerned with
its behavior under experiments. Notice that fixed data hidden algebras protect
their data; for example, such an implementation of a stack of natural numbers
does not corrupt its builtin natural numbers.

We next formalize the notion of “experiment,” which informally is an obser-
vation of an attribute of a system after it has been perturbed by some methods,
using the mathematical concept of context; the symbol e below is a placeholder
for the state being experimented upon.

Definition 3. Given a hidden subsignature I' of X', an (appropriate) I'-context
for sort s is a term in Tr({e : s} U Z) having exactly one occurrence of a spe-
cial variable® o of sort s, where Z is an infinite set of special variables. Let
Crle : s] denote the set of all I'-contexts for sort s, and var(c) the finite set of
variables in a context ¢ except o. A I'-context with visible result sort is called
a I'-experiment; let Ep[e : s| denote the set of all I'-experiments for sort s.
When the sort of experiments is important, we use the notation Cr g [e : s] for the
I'-contexts of sort s' for sort s, while Ery[e : s] denotes all the I'-experiments
of sort v for sort s. If c € Crg[® : s] and t € Tx s(X), then c[t] denotes the
term in Tx o (var(c) U X) obtained from c by substituting t for e; formally,

2 Special variables are assumed different from any other variables in a given situation.



clt] = (e = t)*(c), where (¢ — t)*: Tx(var(c) U{e :s}) = Tx(var(c) U X) is
the unique extension of the map (¢ — t): var(c) U{e : s} = Tx(var(c) U X)
which is identity on var(c) and takes o : s to t. Furthermore, ¢ generates a map
Ac: Ay — [Av7() — Au] on each X-algebra A, defined by A.(a)(6) = a}(c),
where aj is the unique extension of the map (denoted ag) that takes o to a and
each z € var(c) to 6(z).

The interesting experiments are those of hidden sort, i.e., those with s € H;
experiments of visible sort are allowed just to smooth the presentation.

We now define a distinctive feature of hidden logic, behavioral equivalence.
Intuitively, two states are behaviorally equivalent iff they cannot be distinguished
by any experiment that can be performed on the system.

Definition 4. Given a hidden X -algebra A and a hidden subsignature I' of X,
the equivalence given by a =% a' iff A, (a)(0) = A,(a’)(0) for all I"-experiments
v and all maps 0: var(y) — A is called I'-behavioral equivalence on A.
We may write = instead of =L when £ and I' can be inferred from context,
and we write =y when ¥ = I'. Given any equivalence ~ on A, an operation
o in s, s,.s is congruent for ~ iff A,(a1,...,an) ~ Ay(al, ..., a),) whenever
a; ~ a for i = 1..n. An operation o is I'-behaviorally congruent for A iff
it is congruent for =%. We often write just “congruent” instead of “behaviorally
congruent™. A hidden I'-congruence on A is an equivalence on A which is

the identity on visible sorts and for which each operation in I is congruent.

The following is the basis for several results below, generalizing a result in [17]
to operations that have more than one hidden argument or are not behavioral;
see [27, 26] for a proof. Since final algebras do not necessarily exist in this setting,
existence of a largest hidden I'-congruence does not depend on them, as it does
in coalgebra [29,23,22].

Theorem 1. Given a hidden subsignature I' of X and a hidden X-algebra A,
then I'-behavioral equivalence is the largest hidden I'-congruence on A.

Definition 5. A hidden X-algebra A I'-behaviorally satisfies a Y -equation
(VX) t =t say e, iff O(t) =L O(t') for each 0: X — A; in this case we write
A lzg e. If E is a set of X-equations, we write A lzg E if A I'-behaviorally
satisfies each X -equation in E.

When ¥ and I' are clear from context, we may write = and [E instead of
=L and lzg, respectively. Also, to simplify the presentation, we only consider

unconditional equations here, but the theory also allows conditional equations
[17,18,26].

Definition 6. A behavioral (or hidden) Y -specification (or -theory) is
a triple (X, E) where ¥ is a hidden signature, I' is a hidden subsignature
of X, and E is a set of Y-equations. The operations in I' — X [y are called

3 A similar notion was given by Padawitz in [24].



behavioral. We usually let B, B', By, etc., denote behavioral specifications. A
hidden X-algebra A behaviorally satisfies (or is a model of) a behavioral

specification B = (X, IE) iff A lzg E, and in this case we write A E B; we
write B [E e if A [E B implies A lzg e. An operation o € ¥ is behaviorally
congruent for B iff o is behaviorally congruent for every A E B.

The following gives the existence of many congruent operations:

Proposition 1. If B = (X I, E) is a behavioral specification, then all opera-
tions in I, and all hidden constants, are behaviorally congruent for B.

Of course, depending on E, other operations may also be congruent; in fact, our
experience is that all operations are congruent in many practical situations.

2.1 An Example

We illustrate our concepts an example with infinite streams. These are common
in the formal specification and verification of protocols, where they serve as
inputs and outputs.

bth STREAM is sort Stream .
protecting NAT .
op head : Stream -> Nat .
op tail : Stream -> Stream .

op _&_ : Nat Stream -> Stream .

op odd : Stream -> Stream .

op even : Stream -> Stream .

op zip : Stream Stream -> Stream .

var N : Nat . vars S S’ : Stream .

eq head(N & S) = N . *kk 1
eq tail(N & S) = S . *kk 2
eq head(odd(S)) = head(S) . *kk 3
eq tail(odd(S)) = even(tail(S)) . *kk 4
eq head(even(S)) = head(tail(S)) . *x*kk 5
eq tail(even(S)) = even(tail(tail(S))) . **xx* 6
eq head(zip(S,S’)) = head(S) . *kk 7
eq tail(zip(S,S’)) = zip(S’,tail(S)) .  *** 8

end

As usual, head, tail and _&_ give the first element, the elements after the first,
and place an element at the front of a stream, respectively, while odd and even
give the streams of elements in the odd and even positions, respectively, and zip
interleaves two streams.

A behavioral theory is declared in BOBJ via the keywords bth ... end, with
the signature and the equations in between. All sorts declared in a behavioral
theory are considered hidden; the visible sorts (here Nat) are imported from



some visible (data) specification (here NAT). Also operations are behavioral by
default; an operation not intended to be behavioral (which is rather rare in
practice) is given the attribute ncong. The models of a behavioral theory are
the hidden algebras that behaviorally satisfy all its equations. In our case, the
standard model is that of infinite lists of natural numbers, with head and tail
as expected (the tail of an infinite list is infinite), and for example, odd(1 2 3 4
56789 ...)is13579 ...,even(1 23456789 ...)is246
8 ...,and zip(1 3579 ...,2468 ...)is123456789 ....
However, there may also be non-standard models; for example, the model with
exactly one element in each carrier is valid for any loose data hidden theory.

In this example, I" contains all the operations, because all of them are behav-
ioral by default. Therefore, head(e), tail(e), head(tail(zip(odd(e), 2))),
are all I'-contexts. If A is the standard infinite list model, then two lists are
behaviorally equivalent iff they have the same elements in the same order. How-
ever, there are models where a stream is an infinite tree, or some other infinite
structure, and elements can be behaviorally equivalent but not equal.

One can show that head and tail suffice as behavioral operations, since
together they can observe all behaviors of states, and thus define the behavioral
equivalence. There are at least two approaches to behavioral operations: one
says that I" should contain as few operations as possible, and the other says it
contain as many as possible. We advocate the second approach, since it is natural
in it to select various subsets, called cobases, that support simple coinduction
proofs. Moreover, any operation that is consistent with the intended behavior
of a specification, i.e. that preserves the behavioral equivalence, can be added
to I' without changing the behavioral equivalence relation [26], and there are
convenient congruence criteria to determine whether this is the case, as described
in Subsection 4.3.

3 Hidden Equational Deduction and Cobasis Coinduction

This section presents our latest version of behavioral deduction, excluding circu-
lar coinduction, which is described in the next section, and “explicit coinduction”
[17], where the user must provide an explicit relation, since this is difficult to au-
tomate. However, we do discuss cobasis coinduction (also called A-coinduction),
because the relation that it uses can be generated automatically from a cobasis?.
We expect future work to yield further improvements in mechanizing coinduc-
tion.

3.1 Hidden Equational Deduction

Ordinary equational deduction is unsound for behavioral satisfaction, because
the congruence deduction rule is unsound for operations that are not behaviorally
congruent (e.g., for NDSTACK in [18]). The rules below modify the usual equational

1 Cobases are introduced in the next section.



deduction to account for this. We fix a specification B = (X, I, E) and let = Eq
be defined on terms by (1)—(5) below.

(1) Reflexivity :

(2) Symmetry :

(3) Transitivity :

(4) Substitution :

(5) Congruence :

Eeq
tEEq '
t Eeq

t EEq t,t EE’q t”

t EE’q t"

(W)t=t€E, 0:Y = Tx(X), 6(t) =g, 0(t:)

0(t) =g )

t =g t', sort(t,t') eV
a(W,t) =Eq o(W,t'), for each o € Der(X)

a)

t =g t', sort(t,t') € H
o(W,t) =Hq o(W,t"), for each congruent § € ¥

b)

If o is any derived operation over X having an argument of sort s, and if ¢ is
a Y-term of sort s, then for simplicity we let o(W,t) denote the term obtained
from o replacing its argument of sort s by ¢ and using some distinct variables
W for the other arguments.

Unlike equational logics, the deduction system above is not complete. In fact,
behavioral satisfaction is a IT9-hard problem [5], so one cannot find an automatic
procedure to prove all true statements or disprove all false statements. For the
example in Subsection 2.1, one can relatively easily prove

head(zip(N & S, S?)) =Hq head(N & zip(S’, S)),

tail(zip(N & S, S?)) =Eq tail(N & zip(S’, S)),
head(zip(odd(S), even(S’))) =Eq head(S), and

head(tail ((zip(odd(S), even(S’)))) =Hq head (tail(S)),
head (tail'® ((zip(odd(s), even(5’)))) =p, head(tail'®(s)),

and much more, but it is not possible to prove any of the following:

even(N & S) S 0dd(8),

zip(N & S, §) =g, N & zip(s’, 9),
zip(odd(S), even(S)) =Eq S,
odd(zip(S, S’)) =Eq S.

We will see that some of these can be proved by cobasis coinduction, while others
need circular coinduction.



3.2 Complete Sets of Observers

A complete set of observers [3] is a set of contexts that can “generate” all exper-
iments on a system. The following definition is adapted from [3] to our notation
and terminology:

Definition 7. Given a hidden signature I', a complete set of observers for
I' is a set of I'-contexts, say A, such that for each I'-experiment y € Ep[e] there
is some I'-context § € A which is a subcontext® of 7.

This says that every experiment v has the form +'[§] for some other “smaller”
experiment 7' and some § € A. This notion already has a dual flavor to that of
basis for structural induction, where for each element ¢ of an abstract data type,
there is some other element ¢’ and an operation ¢ in the basis such that ¢ = §[¢'].
The following provides two easy examples:

Proposition 2. For any I', both I' and Er[e] are complete sets of observers.

Consider the hidden subsignature I" of the signature of streams in the exam-
ple in Subsection 2.1 containing only the operations head and tail. Obviously,
Ere] consists of all the terms of the form head(tail(...(tail(e)))), for an arbi-
trary number of occurrences of tail. Then it is easy to see that

Ay = {head(e),tail(e)} =T,
Ay = {head(e),head(tail(e)),tail(tail(e))},
Az = {head(e),head(tail(e)), head(tail(tail(e))),tail(tail(tail(e)))},

A = Erfe],

are all complete sets of observers for I

To simplify writing, we ambiguously let I" also denote the subset of I'-
contexts obtained directly, without composition, from the operations in I', such
as A; above.

As with induction, where some bases can be better than others for particular
proofs, it is possible that some different complete sets of observers are better for
different applications. For example, if one defines a stream blink by

eq head(blink) = O .
eq head(tail(blink))
eq tail(tail(blink))

1.
blink .

then it is almost certain that the complete set of observers A, above is better
than the others. (The stream blinkis 0 1 0 1 ....)

We do not further develop this topic here, here but refer to [3,26]. However,
we would mention a disadvantage of complete sets of observers, that they do not
take into account the whole specification but only its signature. In particular,
in the example in Subsection 2.1 where I' = X' contains all the operations, it is
pretty cumbersome to find an appropriate complete set of observers.

® That is, a subterm; notice that § necessarily contains the variable o from ~.



3.3 Strong Cobases

The complete formal definition of a strong cobasis is quite technical and not
relevant to our work, so we skip it. Intuitively, a strong cobasis is a complete set
of observers that takes into account the equations of a specification in showing
that “for each I'-experiment 7 there is some context § € A which is a subcontext
of 7.

In the example of streams with I" = X', one can tediously prove by induction
on the structure of contexts that any experiment is equal to an experiment
containing only head and tail operations, so all the complete sets of observers
Ay, As, ..., Ax for I' = {head, tail} in the previous subsection really are
strong cobases for the original specification of streams. A less intuitive strong
cobasis for streams is {head, odd, even}, and one can also tediously show that
any experiment is equivalent to an experiment containing only head, odd and
even. Intuitively, this is because the three operations can “observe” any element
in a stream. For example, head (even (odd (odd (S)))) observes the fifth element
of S, while the experiment head (even (even(odd(even(odd(S)))))) observes
the 27th element:

S = a; az az a4 a5 g a7y ag ag - - -
odd (8) =aj az as ary ag a1l a13 G1s -
even(odd(S)) = a3 ar a1l G15 19 G23 A7 G431 " °
odd (even(odd(S))) = a3 ai1 G19 G27 G35 A43 A51 A59 ***
even(odd(even(odd(S)))) = ai1 as7 Q43 as9 -+

even(even(odd(even(odd(S))))) = a7 asg -
head(even(even(odd(even(odd(S)))))) = asr

There are situations where the latter cobasis is better than the standard one;
see [26] for a detailed presentation of strong cobases, together with more elegant
proofs that the above are all strong cobases, and a proof that any complete set
of observers is a strong cobasis.

3.4 General Cobases
Our general notion of cobasis (see also [18,19, 25]) is as follows:

Definition 8. If B' = (X', I, E') is a conservative extension of B = (X, I,E)
and if A C X', then A is a cobasis for B iff for all hidden sorted terms
t,t' € Ts p(X), if B'E (YW, X) §(W,t) = §(W,t') for all appropriate 6 € A
then BE (VX)t =t

The following is a key first step toward automation of coinduction; it was first
proved in [27]:
Theorem 2. Every strong cobasis is a cobasis.

To ease presentation, from now on suppose that A is a cobasis of B with
B" = (Der(X),IVE) and A C Der(I'), where Der(X) denotes the set of all
Y-derived operations.



3.5 A-Coinduction

Once a cobasis is available, coinduction can be applied automatically. Let = EqA
be the relation generated® by rules (1)-(5) in Subsection 3.1, plus

oW, t) = O0(W, ') for all appropriate 6 € A
(6) A-Coinduction: Ega

t =EgA t’
The following is immediate from the definition of cobasis:

Proposition 3. =Eq C =Ega Cc =.

Thus, to prove that terms ¢, ¢’ are behaviorally equivalent, it suffices to show that
t =Fga t'. In particular, in our stream example, where A = {head(s),tail(e)}
is a cobase, one can immediately prove by A-coinduction and equational reason-
ing that

zip(N&S, S') =Ega N&zip(S',S),

by showing that head applied either term is N, and that tail applied to either
term is zip(S?, S). One can also prove even(N&S) =FEg¢a 0dd(S), and many
other similar behavioral properties.

4 Circular Coinduction

This section gives an inference rule for behavioral reasoning, called circular coin-
duction, since it handles some examples with circularities (i.e., infinite recur-
sions) that could not be handled by previous rules here (or in [27,18,19,25]);
we may also call it circular A-coinduction or A®-coinduction.

After exploring how to prove the congruence of operations in [27] (see also
[26] and Subsection 4.3 below), we became convinced that this does not dif-
fer essentially from proving other behavioral properties, except perhaps that it
is usually easier. Also certain “coinductive patterns” that appeared in specify-
ing operations inspired a congruence criterion that could automatically decide
whether an operation is congruent [27, 26]; moreover, this criterion followed from
the A-coinduction rule and was strong enough for all proofs we knew at that
time. But the fact that the congruence of zip in Subsection 2.1 (in the con-
text in which only head and tail are declared behavioral) didn’t follow by that
criterion, suggested that more powerful deduction rules were needed.

Bidoit and Hennicker [3] gave a general congruence criterion from which
the congruence of zip followed easily. Influenced by the relationship between
A-coinduction and the congruence criterion in [27], we sought a general infer-
ence rule from which the criterion in [3] would follow as naturally as our cri-
terion in [27] followed from A-coinduction, and which could prove behavioral
properties not provable by A-coinduction. The result of this search was circular
A-coinduction, as presented in this section and implemented in BOBJ [14].

6 Strictly speaking, =gq should be replaced by =pga 10 rules (1)—(5).



4.1 Limitations of A-Coinduction

We first give some examples where the six rules generating the relation = Eq.a
are not enough to prove certain simple properties, which however can be easily
proved by circular A-coinduction.

Suppose one wants to prove that zip(odd(S), even(S)) = S holds in the
behavioral specification of Subsection 2.1. Let us choose the standard (strong)
cobasis A = {head(e),tail(e)}. For A-coinduction, one has to prove that
head(zip(odd(S), even(S))) =FgA head(S), which follows by equational de-
duction, and that tail(zip(odd(S), even(S))) =Fga tail(S), which reduces to
zip(even(S), even(tail(S))) =Ega tail(S). By A-coinduction, one similarly
generates two other subgoals, namely head(zip(even(S), even(tail(S)))) =Fga
head(tail(S)), which is easy, and tail(zip(even(S),even(tail(S)))) =Fga
tail(tail(S)), which reduces to zip(even(tail(S)), even(tail(tail(S)))) =Fga
tail(tail(8)). Since the last subgoal is nothing but the previous (hidden) one
where S is replaced by tail(S), this procedure will loop forever, and thus does
not work. But circular coinduction will detect this circularity and terminate,
declaring the initial goal proved. Before we discovered and implemented circular
coinduction, BOBJ either froze or reported a “segmentation fault” when asked to
automatically prove such properties. We encourage the interested reader try to
prove odd(zip(S,S’)) =Fga S with basis coinduction, and to discover another
seemingly hopeless circularity there.

4.2 Circular A-Coinduction

Let B = (X,I,E) be a fixed behavioral specification for this subsection. To
ease the presentation, suppose that A is a complete set of observers. Technically
speaking, A can be a strict cobasis but the proofs are slightly more complicated;
although we haven’t yet proved the correctness of circular coinduction for general
cobases, this doesn’t seem to have any practical relevance, since all the concrete
cobases we know are either complete sets of observers or are strong cobases. We
consider all equations to be quantified by exactly the variables that occur in
their two terms, and omit them whenever possible; we also write ¢ = ¢’ instead

of BE (VX)t=t.

Definition 9. Substitutions ,0': X — Tp(Y) are behaviorally equivalent,
written 8 = 0', iff 0(x) = 0'(x) for every x € X. Terms ¢t and t' are strongly
behaviorally equivalent, written t = t', iff for any B-algebra A and any
1,72 X — A with () =5 n(z) for each x € X, 71 (t) =5 = (t').

Notice that = is symmetric and transitive but may not be reflexive, since, for
example, terms of the form o (1, ..., x,) are not strongly equivalent to any term
if o is not congruent (see also 5 of Proposition 4).

Proposition 4. The following hold:



t" implies t = t';

~

t
t=u iff t = u, whenever u is a I'-term”;

t=tiff ~[t] = ~[t'] for all appropriate I'-experiments ;
t=t" and 6 = 0" imply O(t) = 0'(t');

5. 0 is congruent iff o(x1,...,xn) = 0(T1, ... Tp).

e e~

Proof. 1. This is straightforward since one can take 74 = 75 in Definition 9.

2.1ft = uthen t = u by 1. Now suppose that ¢t = u and let 79,7 be like in
Definition 9. Since u contains only congruent operations, then one can easily
show by structural induction that 7y (u) =4 7»(u). On the other hand, since

7 (t) =5 71 (u) and 7 (t) =5 w(u), it follows that t = u.

3. Suppose that t = ¢, that + is a I'-experiment and that 7,7 var(t,t') U
var(y) — A are maps as in Definition 9. It is immediate that 71 (t) =5 = (t).
Since v contains only congruent operations, it can be easily seen that 7 (y[t]) =
Ay (mi(8)(m) = Ay (= (') (1) = Ay (12(t"))(12) = T2(y[t']). Conversely, suppose
that [t] = v[t'] for all appropriate I'-experiments v, and let 71,72 : var(t,t') —
A be two maps as in Definition 9. It suffices to show that for any I'-experiment -,
Ay (11(t)) = Ay(m=(t')) as functions in [(var(y) — A) — A]. Notice that giving
a function in [var(y) — A] implies extending 71,7 to functions var(t,t') U
var(y) — A, in which case, A, (11(t)) = n(v[t]) = Ay (2(t")) = = (v[t'])-

4. this follows by noticing that for any 71,7 : Y — A with 71 (y) =L m(y), and
any 6,0 : X — Tr(Y) with 6 = €', it is the case that the maps 0; 71,0 ;72: X —
A also satisfy the property that (0;71)(z) =L ('; 72)(x) for each x € X.

.,ar) for any ay,al, ..., an,al, with
(o(zq,...,x,)) for Tl(l’l) = a; and
0'(561, )

S
=

5. o is congruent iff A, (ay,...,a,) = A (
ay = dl, ..., a, = al, iff 7 (0(zq,...,2 ))ETZ
o) = a} for all 1 < i < niff o(2y,...,2,) =

For the rest of the section, we assume some well-founded partial order < on
I'-contexts which is preserved by the operations in I'. For example, one such
order is the depth of contexts.

Definition 10. Terms t and t' are A°-coinductively equivalent iff for each
appropriate § € A, either (W, t) = 6(W, t') = u for some I'-term u, or 6(W,t) =
0(c[t]) and 6(W,t") = 0'(c[t']) for some 8§ =6 and c < 4.

Theorem 3. Ift and t' are A°-coinductively equivalent then t = t'.

Proof. We first show by well-founded induction that for every appropriate ex-
periment, v, y[t] = [t']. Let v be any experiment and assume that 4[] = +/[t']
for all experiments v’ < «. Since A is a complete set of observers, there is some

" We write “I'-terms” for simplicity, but the result holds for all terms built with
congruent operations.



experiment 7" such that v = +"'[4] for some § € A. If there is some I'-term u
such that 6(W,t) = 6(W,t') = u then v[t] = [t'] = ~"[u] and "[u] is a ['-term,
so by 2 of Proposition 4, y[t] = v[t']. On the other hand, if 6(W,t) = 6(c[t]) and
(W, t") = 0'(c[t']) for some § = 0" and ¢ < §, then since the variables appearing
in contexts are assumed to be always different from the other variables, one gets
that y[t] = 0(y"[c[t]]) and 7[t'] = 6'(v"[¢[t']]), and so by the induction hypothesis
for 4" = ~"[c] < 4"[6] = v and 4 of Proposition 4, v[t] = v[t']. The rest follows
by 3 of Proposition 4.

1K

K

Therefore we can add a new inference rule. Since in most cases 6 = 6', we let
E%q , be the relation generated® by the rules (1)-(6) in Subsections 3.1 and

3.5 and the following:

(6(W, 1) E%M u E%M S(W,t")

where u is some ['-term) or
(6(W,t) =% . 6(c[t]) and 6(W,t") =% . 0(c[t'])

f()I some : 6 f()I all a[)I)I()[)Ila(e 6 : A
< €
(‘) AO—COindUCtion : ‘ ) 5 ) t[
Eq,A

In order to prove that ¢ = t', one can prove now that ¢ E%q A t'. For

example, to prove that zip(odd(S), even(S)) = S, the property that sent
A-coinduction into an infinite loop in Subsection 4.1, one can first prove that
zip(even(S), even(tail(S))) E%QA tail(S) by {head,tail}“-coinduction

(if ¢ is head then we are in the first case of (7) and if § is tail then we are in
the second case of (7) with ¢ = e and 6(S) = tail(S)), and then to prove by
{head, tail}-coinduction the original behavioural equality as in Subsection 4.1.
We suggest the reader prove that odd (zip(S,S?)) = S also by {head,tail}®-
coinduction and then prove both statements by {head,odd, even}-coinduction.

BOBJ implements circular coinductive rewriting [14,13], an algorithm that
combines the coinduction inference rules presented in this paper with behavioral
rewriting, an adaptation of term rewriting to our behavioral equational deduc-
tion system; this can automatically prove all the reasonable statements that we
know, including all those mentioned in this paper, and all those that we tried
from examples previously done by CoClam [6] using complex heuristics, but of
course new inference rules may be needed for more exotic examples.

4.3 Congruence Criteria

The simplest way to find a cobasis for a behavioral specification is to guess
one and then to show that all the other operations are behaviorally congruent

8 Strictly speaking, =g

=0
by =Bga -

g inrules (1)-(5) and =pgga istule (6) should be replaced



for a specification having the same equations and operations as the original
specification but only the guessed operations declared as behavioral (see [18,
26] for more detail). Since one of our major goals is to automate the process of
behavioral deduction in BOBJ, the problem of automatic detection of cobases
plays a crucial role. BOBJ implements a heuristic that works well in practical
situations, and is based on the following criteria, which follow from Theorem
3. The first congruence criterion, which we will call the BH criterion, is the
essence of that in [3]:

Corollary 1. Given a complete set A of observers and some o € X such
that for each 6 € A, either d[o(xy1,...,xn)] = u for some I'-term u, or else
Olo(z1,...,x,)] = clo(t,...,tn)] for some I'-terms t,....t, and ¢ < ¢, then o is
congruent.

Proof. Theorem 3 with t = ¢/ = o(xy,...,x,) and 6 = ¢ with 6(x;) = ¢; for
all 1 < i < n, gives o(21,..., &) = 0(x1,...,2n). Then 5 of Proposition 4 gives
congruence of .

The following simpler but common congruence criterion, which we here call
the RG criterion, was presented in [27] together with the suggestion that it
could be easily implemented in a system like CafeOBJ:

Corollary 2. Given an operation o € X such that for each § € I, if the equation
Olo(x1,...,xn)] = u for some I'-term u is in E, then o is congruent.

Proof. This is the special case of the BH criterion where A = I' and there is no
circularity (i.e., recurrence) in the definition of o.
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